
ÏÐÈËÎÇÈ, Îääåëåíèå çà ïðèðîäíî-ìàòåìàòè÷êè è áèîòåõíè÷êè íàóêè, ÌÀÍÓ, òîì 38, áð. 2, ñòð. 153-164 (2017)
CONTRIBUTIONS, Section of Natural, Mathematical and Biotechnical Sciences, MASA, Vol. 38, No. 2, pp. 153-164 (2017)

Received: October 17, 2016 ISSN 1857-9027
Accepted: July 12, 2017 e-ISSN 1857-9949

UDC: 511.331:517.581
DOI: 10.20903/csnmbs.masa.2017.38.2.111

Original scientific paper

CONVERGENCE OF DIRICHLET SERIES AND EULER PRODUCTS

Doug S. Phillips1, Peter Zvengrowski2

1Information Technologies, University of Calgary

2Department of Mathematics and Statistics, University of Calgary

e-mail: phillips@ucalgary.ca, zvengrow@ucalgary.ca

The first part of this paper deals with Dirichlet series, and convergence theorems are proved that strengthen
the classical convergence theorem as found e.g. in Serre’s “A Course in Arithmetic.” The second part deals with
Euler-type products. A convergence theorem is proved giving sufficient conditions for such products to converge in
the half-plane having real part greater than 1/2. Numerical evidence is also presented that suggests that the Euler
products corresponding to Dirichlet L-functions L(s, χ), where χ is a primitive Dirichlet character, converge in this
half-plane.
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1. INTRODUCTION

The general theme of this note is convergence.
In Section 2 this is studied for Dirichlet series and in
Sections 3-5 for infinite products, in particular for
Euler products. For the Dirichlet series we more or
less follow [11] and give the proof (cf. Theorem 2.7)
that a series such as the “Euler-Dedekind” or “al-
ternating” zeta function η(s) = Σ∞n=1(−1)n−1n−s, in
addition to converging absolutely for σ > 1 (here as
usual s = σ + it), converges conditionally for σ > 0.
Theorem 2.9 is a refinement of Theorem 2.7, and
Theorem 2.12 a further refinement which gives suffi-
cient conditions for convergence for σ > .5.

Section 3 gives numerical data which suggests
that the Euler product for the Dirichlet L-function
L(s, χ) associated to a primitive mod q character
χ (q ≥ 3), which is well known to converge abso-
lutely for σ > 1, also converges for σ > .5. Sec-
tion 4 then presents some theory which gives suffi-
cient conditions for Euler-type products to converge
for σ > .5. Section 5 gives further numerical evi-
dence which, combined with Theorem 4.3, strongly
suggests such convergence for the L-functions being

considered. Of course, since (as we shall see in Sec-
tion 4) convergent infinite products cannot equal 0,
this would imply the Generalized Riemann Hypoth-
esis for all these L-functions, namely each such L-
function cannot have a zero if σ > .5 (cf. [6], [10]).

Section 6 gives further examples and concludes
with a few questions.

2. DIRICHLET SERIES

We commence with a little “review” material
to establish some conventions and notation. By a
Dirichlet series we mean an infinite series

f(s) =

∞∑
n=1

an
ns

=

∞∑
n=1

ann
−s, an ∈ C.

A very familiar example is the case an = 1, f is
then the Riemann zeta function ζ. For t = 0, i.e.
for s = σ ∈ R , it is proved in elementary calculus
that ζ(σ) diverges for σ = 1 and is absolutely con-
vergent for σ > 1. This is called the “p-test” (where
p = σ) but should really be called the “ζ-test.” An-
other familiar example (again when s = σ ∈ R) is
the Euler-Dedekind function η(σ) defined in Section
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1. It is proved in elementary calculus that this series
converges for σ > 0, where the convergence is condi-
tional for 0 < σ ≤ 1 and absolute for 1 < σ. In this
section we shall prove that very similar results hold,
with appropriate hypotheses on the coefficients an,
for s ∈ C, i.e. dropping the condition t = 0.

From elementary complex analysis, for any
x ∈ R+, one has |xs| = xσ. In particular |n−s| =
n−σ. Using this together with the ζ-test gives the
next result immediately.
2.1 Proposition : If |an| is bounded then the
Dirichlet series Σann

−s is absolutely convergent for
σ > 1.

In particular this holds for ζ(s), η(s) and all L-
functions L(s, χ) := Σ∞n=1χ(n)n−s for any Dirichlet
character χ, indeed |an| ∈ {0, 1} for these functions.
2.2 Examples : The mod 3 character χ3

2 is de-
fined by χ3

2(n) = 0, 1,−1 for n congruent respec-
tively to 0, 1, 2 modulo 3. One has L(s, χ3

2) =
1− 2−s + 4−s− 5−s + 7−s− 8−s . . . . By the Leibniz
alternating series test we see that both η(s), L(s, χ3

2)
converge (conditionally) along the real line s = σ for
0 < σ ≤ 1. The first objective of this section is to
show that this remains true for all t, i.e. Dirichlet
series such as in these two examples are convergent
for σ > 0, for all t. The treatment is very close to
that of [11].
2.3 Lemma : Let α, β, σ ∈ R, 0 < σ, 0 < α < β.

Then |e−αs − e−βs| ≤ |s|
σ

(e−ασ − e−βσ) .

Proof: We have

e−αs − e−βs = s

∫ β

α

e−usdu,

hence |e−αs − e−βs| ≤ |s|
∫ β

α

|e−us|du

= |s|
∫ β

α

e−uσdu =
|s|
σ

(e−ασ − e−βσ). �

2.4 Corollary : Set α = log(m), β = log(n) ,
0 < m < n, σ > 0, then

|m−s − n−s| ≤ |s|
σ

(m−σ − n−σ) .

2.5 Lemma (Abel’s summation formula) : Let
ak, bk ∈ C, n ≥ 1, and set An = a1+ · · ·+an. Then

n∑
k=1

akbk = Anbn+1 −
n∑
k=1

Ak(bk+1 − bk) .

Proof: Let A0 = 0. Then
n∑
k=1

akbk =

n∑
k=1

(Ak −Ak−1)bk =

=

n∑
k=1

Akbk −
n∑
k=1

Akbk+1 +Anbn+1

which is the same as the right hand side of Abel’s
formula. �
2.6 Corollary : The sum Σ∞k=1akbk converges if
both Σ∞k=1Ak(bk+1 − bk) and {Anbn+1} are con-
vergent.

We remark that Abel’s summation formula
can be thought of as a discrete version of the fa-
miliar integration by parts formula from calculus.
This should be clear by writing them side by side

as

n∑
k=1

bkak = Anbn+1 −
∑n
k=1Ak(bk+1 − bk)∫

udv = vu−
∫
vdu .

Before turning to the first main theorem of
this section, we recall some standard facts about con-
vergence of an infinite series of complex numbers zn.
The partial sums are written Sn := Σnk=1zk, and one
says that Σ∞k=1zk = S if and only if limn→∞ Sn ex-
ists and equals S. In this case the series is said to be
convergent. A necessary condition for convergence
is zn → 0 as n → ∞. A necessary and sufficient
condition, the Cauchy convergence criterion, is that
for any given real number ε > 0 there exists N ∈ N
such that for all m,n ≥ N, |Sn − Sm| < ε.

We now turn our attention to zn = ann
−s,

i.e. the Dirichlet series Σ∞n=1ann
−s, an, s ∈ C. The

notation An = a1 + . . . + an for such a Dirichlet
series will be used henceforth.
2.7 Theorem : Consider Σ∞n=1ann

−s, an ∈ C.
If {|An|} is bounded then the series converges for
σ > 0.
Proof: We have |An| ≤ C, for some C > 0 and
for all n. We shall use Corollary 2.6, with an = an
and bn = n−s. Then |Anbn+1| = |An| · |bn+1| ≤
C · (n+ 1)−σ → 0 as n→∞. Hence the second con-
dition of Corollary 2.6, {Anbn+1} converges (in this
case to 0), is satisfied.

For the first condition, we apply the Cauchy
convergence criterion to Σ∞k=1Ak((k + 1)−s − k−s).
Given ε > 0 and using Corollary 2.4 we have

|Sn − Sm| = |
∑n
k=m+1Ak((k + 1)−s − k−s)|

≤ C ·
n∑

k=m+1

|(k + 1)−s − k−s|

≤ C|s|
σ

n∑
k=m+1

(
1

kσ
− 1

(k + 1)σ
)

=
C|s|
σ

(
1

(m+ 1)σ
− 1

(n+ 1)σ
)

≤ C|s|
σ(m+ 1)σ

< ε

for m sufficiently large. �
The first objective of this section is thus ac-

complished. We give a corollary. Recall that the triv-
ial (also called principal) Dirichlet character mod-
ulo q is given by χ(n) = 0 for all n such that
gcd(q, n) > 1, and χ(n) = 1 when gcd(q, n) = 1.
2.8 Corollary : For η(s) or for L(s, χ) with χ
any non-trivial Dirichlet character χ modulo q, the
Dirichlet series converges for σ > 0.
Proof: For η, An ∈ {0, 1} is bounded. For any
non-trivial character χ modulo q one has Aq =
χ(1) + . . .+χ(q) = 0 (cf. [10] Ex. 2.2.8) so {|An|} is
periodic modulo q, hence finite and bounded. �
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We remark that Theorem 2.7 is proved in [11],
but the proof is a little less direct than the one given
above, and is restricted to the case an ∈ R (for no
apparent reason). We also remark that Corollary 2.8
is identical to [10] Ex. 2.3.4.

The second objective of this section is to con-
sider possible strengthening of the above results, in
particular 2.3, 2.7, and their corollaries. It will be
seen in Sections 4-5 that such strengthening could
be very useful. First consider Corollary 2.4. An-
other obvious (second) upper bound is |m−s−n−s| ≤
|m−s|+ |n−s| = m−σ + n−σ. It can be seen that for
each fixed values for m,n, σ there is a t∗ such that
the first upper bound (from 2.4) is better for t < t∗
whereas the second, which is simply a constant, is
better for t > t∗. Indeed the second becomes better
and better as t increases. Whether this can be used
in some way to strengthen Theorem 2.7 is presently
not known. It may also be possible to find a third
upper bound that improves both the first and second
(of course their minimum will be one such) and also
can be used to strengthen 2.7.

It is in fact possible to strengthen Theorem
2.7 using Corollary 2.4 as it stands, and the next
two theorems are examples.

2.9 Theorem : Consider Σ∞n=1ann
−s, an ∈ C.

If there exists a constant C > 0 such that |An| <
C · log(n), n ≥ 2, then the series converges for σ > 0.
Proof: As in the proof of Theorem 2.7, the second
convergence condition follows since C · log(n) · (n +
1)−σ → 0 as n → ∞. For the first convergence
condition, proceeding as in 2.7, we have

|Sn − Sm| = |
n∑

k=m+1

Ak · ((k + 1)−s − k−s)|

≤
n∑

k=m+1

|Ak| · |k−s − (k + 1)−s| .

Here m ≥ 1, k ≥ 2, hence from both the hypothesis
and Corollary 2.4

n∑
k=m+1

|Ak| · |k−s − (k + 1)−s|

≤ C|s|
σ

n∑
k=m+1

log(k) · (k−σ − (k + 1)−σ) .

For convenience write C|s|/σ = K henceforth, then
the last expression, after a small rearrangement of
the terms, equals

K[log(m+ 1) · (m+ 1)−σ +

n−1∑
k=m+1

(log(k + 1)− log(k)) · (k + 1)−σ − log(n) · (n+ 1)−σ)]

= K[log(m+ 1) · (m+ 1)−σ − log(n) · (n+ 1)−σ +

n−1∑
k=m+1

log(1 +
1

k
) · (k + 1)−σ] .

Next note that for 0 ≤ u ≤ 1, log(1 + u) = u − u2/2 + u3/3 + . . . = u + βu, where |βu| ≤ u2/2, as
in the Leibniz convergence test for series with alternating signs (in fact, using the mean value theorem from
elementary calculus, one sees that this remains true for 0 ≤ u). The previous sum thus equals

K ·

[
log(m+ 1)

(m+ 1)σ
− log(n)

(n+ 1)σ
+

n−1∑
k=m+1

(
1

k
+ β1/k) · (k + 1)−σ

]

≤ K ·

[
log(m+ 1)

(m+ 1)σ
+

∞∑
k=m+1

k−1−σ +
1

2

∞∑
k=m+1

k−2−σ

]
.

For σ > 0 the two summations are abso-
lutely convergent, so given ε > 0, taking m suffi-
ciently large will clearly guarantee that each of the
three terms in the above formula will be smaller than
ε/(3K), completing the proof. �

Since the derivative of ns is log(n) ·ns, we can
use Theorem 2.9 to obtain a corollary similar to 2.8.
2.10 Corollary : For f(s) = η(s) or for f(s) =
L(s, χ) with χ any non-trivial Dirichlet character
modulo q, the Dirichlet series for f ′(s) converges for
σ > 0.

We next prove a convergence theorem even
stronger than Theorem 2.11, but this time with the

additional hypothesis that σ > .5. One easy lemma
is first needed.
2.11 Lemma : For k > 0, (k + 1)1/2 − k1/2

=
1

2k1/2
+ βk, where |βk| <

1

8k3/2
.

Proof : This is almost immediate from the binomial
theorem, which gives the convergent series

βk = − 1

8k3/2
+

3

23 · 3! · k5/2
− 3 · 5

24 · 4! · k7/2
+ . . . .

The Leibniz test for alternating series completes the
proof. �
2.12 Theorem : Consider Σ∞n=1ann

−s, an ∈ C.
If there exists a constant C > 0 such that |An| <
C ·n1/2, n ≥ 1, then the series converges for σ > 1/2.
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Proof : The proof is similar to the proofs of both
2.7 and 2.9, using the Lemma 2.11. The second
convergence condition of Corollary 2.6 follows since
C · n1/2 · (n+ 1)−σ → 0 as n→∞.

For the first convergence condition, proceed-
ing as in 2.7, 2.9, and omitting the first few steps

(which are identical), we have

|Sn − Sm| ≤
C|s|
σ

n∑
k=m+1

k1/2 · (k−σ − (k + 1)−σ) .

For convenience write C|s|/σ = K henceforth, then
the last expression, after a small rearrangement of
the terms, equals

K[(m+ 1)1/2 · (m+ 1)−σ

+

n−1∑
k=m+1

((k + 1)1/2 − k1/2) · (k + 1)−σ − n1/2 · (n+ 1)−σ)] .

Now using Lemma 2.11, this equals

K ·

[
(m+ 1)1/2

(m+ 1)σ
− n1/2

(n+ 1)σ
+

n−1∑
k=m+1

(
1

2 · k1/2
+ βk) · (k + 1)−σ

]
,where |βk| <

1

8k3/2
,

≤ K ·

[
(m+ 1)1/2

(m+ 1)σ
+

1

2

∞∑
k=m+1

k−1/2−σ +
1

8

∞∑
k=m+1

k−3/2−σ

]
.

For σ > 1/2 the two summations are abso-
lutely convergent, so given ε > 0, taking m suffi-
ciently large will clearly guarantee that each of the
three terms in the above formula will be smaller than
ε/(3K), completing the proof. �

3. CONVERGENCE OF EULER
PRODUCTS FOR σ > .5

In this section we simply present some numer-
ical evidence for convergence of certain Euler prod-
ucts in the half plane σ > .5. The Euler products for
any Dirichlet L-function and the Riemann zeta func-
tion are well known to converge absolutely for σ > 1.
We now give some numerical evidence here that for
an L-function coming from a primitive character χ
mod q, q ≥ 3, the Euler product

L(s, χ) =
∏
p

1

1− χ(p) · p−s
,

where the product is taken over all primes p, con-
verges for σ > .5 and diverges for smaller σ. Three
primitive characters are considered, χ3

2 which takes
values 0, 1,−1 as n is respectively congruent to 0, 1, 2
modulo 3, χ4

2 which takes values 0, 1, 0,−1 as n is
respectively congruent to 0, 1, 2, 3 modulo 4, and
χ5
2 which takes values 0, 1, i,−i,−1 as n is respec-

tively congruent to 0, 1, 2, 3, 4 modulo 5. We consider

s = σ + 30i, for σ = .4 (showing divergence) and for
σ = .55, .6, .7, .8, .9, 1.0, 1.1, 1.5, which show stronger
and stronger convergence as σ increases. Of course
for σ = 1.1, 1.5 convergence is known and is absolute.
We choose t = 30 as a fairly typical t value, similar
results can be seen for other t values.

The figures below show the absolute value of
the truncation error ∆ for three Dirichlet L-functions
as a function of the number of factors taken in their
Euler product representations. Curves are shown for
selected values of σ. To aid in extracting numerical
values from the graphs, below each figure is a corre-
sponding table giving ∆ when the number of factors
is a power of 10.

Preliminary calculations were performed with
Maple [9], which also provided reference values for
the L-functions used in calculating the truncation er-
rors. To overcome performance limitations of Maple
when extending the results to large numbers of fac-
tors in the Euler products, a Fortran program based
on MPFUN2015 libraries [2] was used. Mathemat-
ica [12] was used to generate a file of the first 109

primes, which was used as input to the Fortran cal-
culation. Thanks go to Information Technologies at
the University of Calgary for providing access to the
large-memory nodes of the Helix cluster for the bulk
of the computations.

Contributions, Sec. Nat. Math. Biotech. Sci., MASA, 38(2), 153-164 (2017)
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Figure 1. Graph of error terms for L(σ + 30i, χ3
2)

σ ∆(102) ∆(103) ∆(104) ∆(105) ∆(106) ∆(107) ∆(108) ∆(109)

.4 2.64 .948 1.04 1.53 1.28 .929 1.49 3.16

.55 .596 .217 .196 .135 .0809 .0595 .0513 .0497

.6 .384 .131 .107 .0628 .0335 .0222 .0166 .0141

.7 .167 .0478 .0313 .0139 .00582 .00304 .00175 .00116

.8 .0757 .0175 .00909 .00311 .00102 4.14 × 10−4 1.85 × 10−4 9.57 × 10−5

.9 .0352 .00646 .00265 7.02 × 10−4 1.80 × 10−4 5.66 × 10−5 1.97 × 10−5 7.98 × 10−6

1.0 .0167 .00239 7.74 × 10−4 1.59 × 10−4 3.18 × 10−5 7.73 × 10−6 2.10 × 10−6 6.69 × 10−7

1.1 .00801 8.89 × 10−4 2.28 × 10−4 3.63 × 10−5 5.65 × 10−6 1.06 × 10−6 2.24 × 10−7 5.65 × 10−8

1.5 4.63 × 10−4 1.76 × 10−5 1.76 × 10−6 1.02 × 10−7 5.84 × 10−9 3.70 × 10−10 2.99 × 10−11 3.00 × 10−12

Table 1. Error terms for L(σ + 30i, χ3
2)

Ïðèëîçè, Îää. ïðèð. ìàò. áèîòåõ. íàóêè, ÌÀÍÓ, 38(2), 153-164 (2017)
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Figure 2. Graph of error terms for L(σ + 30i, χ4
2)

σ ∆(102) ∆(103) ∆(104) ∆(105) ∆(106) ∆(107) ∆(108) ∆(109)

.4 .599 .970 1.43 1.84 .573 1.21 .673 .979

.55 .154 .194 .118 .109 .0315 .0642 .0253 .0391

.6 .0998 .115 .0569 .0487 .0122 .0236 .00756 .0111

.7 .0427 .0414 .0140 .0104 .00197 .00327 6.75 × 10−4 8.84 × 10−4

.8 .0187 .0151 .00353 .00229 3.40 × 10−4 4.62 × 10−4 6.08 × 10−5 7.19 × 10−5

.9 .00835 .00557 .000915 .000515 6.15 × 10−5 6.62 × 10−5 5.56 × 10−6 5.96 × 10−6

1.0 .00379 .00207 .000243 .000117 1.14 × 10−5 9.53 × 10−6 5.19 × 10−7 4.99 × 10−7

1.1 .00175 .000774 6.63 × 10−5 2.66 × 10−5 2.14 × 10−6 1.38 × 10−6 5.03 × 10−8 4.22 × 10−8

1.5 8.87 × 10−5 1.57 × 10−5 5.22 × 10−7 7.32 × 10−8 2.66 × 10−9 6.10 × 10−10 7.12 × 10−12 2.31 × 10−12

Table 2. Error terms for L(σ + 30i, χ4
2)

Contributions, Sec. Nat. Math. Biotech. Sci., MASA, 38(2), 153-164 (2017)
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Figure 3. Graph of error terms for L(σ + 30i, χ5
2)

σ ∆(102) ∆(103) ∆(104) ∆(105) ∆(106) ∆(107) ∆(108) ∆(109)

.4 1.40 1.75 1.49 1.80 .767 1.86 2.80 3.95

.55 .452 .283 .161 .190 .0577 .0977 .0756 .0476

.6 .310 .163 .0784 .0871 .0231 .0347 .0241 .0130

.7 .145 .0556 .0191 .0185 .00367 .00439 .00248 9.94 × 10−4

.8 .0686 .0195 .00473 .00398 5.86 × 10−4 5.64 × 10−4 2.58 × 10−4 7.66 × 10−5

.9 .0325 .00693 .00120 8.74 × 10−4 9.45 × 10−5 7.38 × 10−5 2.73 × 10−5 5.94 × 10−6

1.0 .0155 .00249 3.08 × 10−4 1.94 × 10−4 1.54 × 10−5 9.82 × 10−6 2.90 × 10−6 4.62 × 10−7

1.1 .00741 .000901 8.13 × 10−5 4.34 × 10−5 2.55 × 10−6 1.33 × 10−6 3.11 × 10−7 3.60 × 10−8

1.5 4.05 × 10−4 1.63 × 10−5 5.50 × 10−7 1.16 × 10−7 2.41 × 10−9 5.01 × 10−10 4.33 × 10−11 1.34 × 10−12

Table 3. Error terms for L(σ + 30i, χ5
2)

4. THEORY OF EULER PRODUCT
CONVERGENCE

We start this section with a brief discussion
of infinite products and the related convergence is-
sues, and conclude with a theorem that seems to give
an approach to proving that Euler products of the
type considered in Section 3 converge, for σ > 1/2.
Intuitively one would say that Π∞n=1un, un ∈ C,
converges when limN→∞ΠN

n=1un = L exists, and
then define Π∞n=1un = L. But this has complica-
tions, especially if any un = 0. For the most general

definition see Apostol’s text [1], p. 207. This defini-
tion has quite a few cases and even a few surprises,
e.g. if un = 1/n we say Π∞n=1un diverges to 0. For
our purposes it suffices to avoid these complications
by using a subset of the Apostol definition and re-
quiring:
(a) un 6= 0 for all n, and
(b) lim

n→∞
un = 1.

Then we may now follow Lang [8] pp. 372-373
and define Π∞n=1un to be convergent (resp. abso-
lutely convergent) if the infinite series Σ∞n=1 log(un)
is convergent (resp. absolutely convergent), provided

Ïðèëîçè, Îää. ïðèð. ìàò. áèîòåõ. íàóêè, ÌÀÍÓ, 38(2), 153-164 (2017)
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we are a little careful with the multivalued logarith-
mic function, as follows. From (a) log(un) is defined
for all n, and from (b), discarding a finite number
of terms if so required (which has no effect on con-
vergence issues), we can suppose |un − 1| < 1/2
for all sufficiently large n. We then choose the
branch of the logarithm for which log(1) = 0. This
also implies limn→∞(log(un)) = 0. Now write
w := Σ∞n=1 log(un) ∈ C, and using the continuity
of the exponential function we see that

∞∏
n=1

un = lim
N→∞

N∏
n=1

un = lim
N→∞

e(
∑N

n=1 log(un))

= elimN→∞(
∑N

n=1 log(un)) = ew

exists and further is non-zero. It is also clear that
Π∞n=1(un)−1 = 1/(ew).

We shall henceforth write un = 1− αn, and
next give two results that connect the convergence
of Π∞n=1un with the convergence of Σ∞n=1αn. The
first concerns absolute convergence and is found in
many texts, cf. [8]. The second concerns convergence
and can be found in [3], p.405, at least for the case
un ∈ R.

4.1 Theorem : Let αn ∈ C \ {1} and suppose
Σ∞n=1αn is absolutely convergent. Then Π∞n=1un is
absolutely convergent.
Sketch of proof (following [8]): The hypotheses on
αn imply conditions (a), (b) for un hold, so we con-
sider Σ∞n=1 log(un) = Σ∞n=1 log(1−αn). Discarding a
finite number of αn if necessary we have |αn| < 1/2,
whence

log(1− αn) = −αn −
α2
n

2
− α3

n

3
− . . . =

− αn(1 +
αn
2

+
α2
n

3
+ . . .) .

It is then easily seen that | log(1 − αn)| ≤
(3/2) · |αn| and the convergence of Σ∞n=1|αn| thus
implies convergence of Σ∞n=1| log(un)|. �

The proofs of the next lemma and theorem
follow Bartle’s proofs for the case αn ∈ R (cf. [3],
given as a “Project”), with a couple of changes that
are discussed in Remark 4.5 below.
4.2 Lemma : Let z ∈ C, |z| < 1/2. Then
(1/6)|z|2 < |z + log(1− z)| < (5/6)|z|2 .
Proof: We have

z+ log(1− z) = z− z− z
2

2
− z

3

3
− . . . = −z

2

2
(1 +R),

where R =

∞∑
n=1

2zn

n+ 2
. Now |R| ≤ (2/3)|z| +

(2/4)|z|2+(2/5)|z|3+. . . ≤ (2/3)|z|(1+|z|+|z|2+. . .)

=
2|z|
3

1

1− |z|
<

2

3
· 1

2
· 1

1− 1/2
=

2

3
, whence 1/3 <

|1 + R| < 5/3. Multiplying by |z|2/2 completes the
proof. �

4.3 Theorem : Let αn ∈ C \ {1} and suppose
Σ∞n=1αn is convergent. Then Π∞n=1un is convergent
if Σ∞n=1|αn|2 is convergent.
Proof: We start as in the proof of 4.1 and have
(again n is assumed sufficiently large so |αn| < 1/2)
log(1−αn) = −αn+βn, where βn = αn+log(1−αn),
so by Lemma 4.2 (1/6)|αn|2 < |βn| < (5/6)|αn|2. By
hypothesis Σ∞n=1αn converges, thus Σ∞n=1 log(1−αn)
converges if and only if Σ∞n=1βn converges. But by
the above inequality (right-hand side) this will follow
from the convergence of Σ∞n=1|αn|2, indeed Σ∞n=1βn
is absolutely convergent here. �
4.4 Corollary: Let αn ∈ C \ {1} and suppose
Σ∞n=1αn is convergent. Then Π∞n=1un is convergent
if αn = O(n−r), r > 1/2.
4.5 Remark: In the real case αn ∈ R, as in [3], one
actually obtains the following stronger result: Let
αn ∈ R, αn < 1, and suppose Σ∞n=1αn is convergent.
Then Π∞n=1un is convergent if and only if Σ∞n=1|αn|2
is convergent. To see this one simply observes, for

n sufficiently large, that βn = −α
2
n

2
− α3

n

3
− . . . =

−α
2
n

2

(
1 +

2αn
3

+
2α2

n

4
+ . . .

)
< 0 . Hence Σβn con-

verges if and only if Σ|βn| converges, and then the left
hand side of the inequality mentioned in the above
proof of Theorem 4.3 can be used, showing that Σ|βn|
converges implies Σ|αn|2 converges.

5. MORE ON CONVERGENCE OF EULER
PRODUCTS FOR σ > .5

Based on the theorems in Section 4, we present
further numerical evidence for the convergence of the
Euler products for σ > .5, for the three Dirichlet
characters considered in Section 3. Indeed, this ev-
idence is stronger in the sense that it will apply to
any s = σ+ it, σ > .5, whereas in Section 3 we took
just one typical value t = 30. Furthermore, it also
appears to be at least as or even more convincing
than the evidence in Section 3.

As seen in Section 4, the convergence of an
infinite product is equivalent to that of its recip-
rocal, so we consider the reciprocal Euler product
L−1(s, χ) = Πp(1−χ(p) ·p−s), taken over the primes
p, for any Dirichlet character χ. It will be conve-
nient to write pn for the n’th prime, so this formula
becomes

L−1(s, χ) =

∞∏
n=1

(1− χ(pn) · p−sn ) =

∞∏
n=1

(1− αn) ,

where αn = χ(pn) · p−sn . Note that Σαn is a Dirich-
let series Σan · n−s with an = 0 at all composite
numbers n, and ap = χ(p) at a prime p. To show
convergence of the above infinite product we seek to
apply Corollary 4.4 above. Since |χ(pn)| ∈ {0, 1}
and σ > 1/2, the second condition of this corollary
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Figure 4. Graphs of Bn for χ3
2, χ

4
2, andχ

5
2

is fulfilled for any Dirichlet character χ. As far as
the first condition Σ∞n=1αn convergent, we must
now assume χ to be a primitive character and at-
tempt to apply Theorem 2.12, where we now have
An = χ(p1) + . . . + χ(pn). Figure 4 above and
the corresponding Table 4 give strong evidence that

|An| < C · p1/2n , indeed we define Bn = max{|Aj | :
j ≤ pn}/

√
pn, and observe from the figure and ta-

ble that Bn is not only bounded but appears to be
converging to 0. Furthermore, the following Figure 5
suggests that Bn = O((log(n))−1). The intuition be-
hind Figure 4 and Table 4 is that for a primitive mod
q character, density theorems imply that the primes
in the various congruence classes mod q occur with

approximately equal frequency. This causes much
cancellation in the sum for |Aj | and therefore, even
though these sums will be unbounded, they cannot
grow too rapidly.

This is also related to the “prime number
races,” cf. [5]. Indeed, the description in Section
1 of that paper, related to the “mod 3 and mod 4
races,” implies that for infinitely many primes the
mod 3 race, which is between primes congruent to 1
modulo 3 and primes congruent to −1 modulo 3, is
tied. And for such primes pn one will have Apn = 0
(for χ3

2). It follows that lim inf
n→∞

Apn = 0 for χ3
2. The

situation for χ4
2 is the same (but not for χ5

2).

n 10 102 103 104 105 106 107 108 109

Bn(χ3
2) .557 .301 .214 .155 .125 .111 .0938 .0896 .0788

Bn(χ4
2) .371 .301 .214 .145 .138 .110 .102 .0838 .0712

Bn(χ5
2) .263 .192 .104 .0780 .0587 .0509 .0363 .0370 .0319

Table 4. Values of Bn
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Figure 5. Graphs of Bn · log(n)

6. EXAMPLES AND QUESTIONS

Our first example is standard. Here (as be-
fore) Πp denotes a product and Σp denotes a sum,
both over the prime numbers, and pn is the n’th
prime.
6.1 Example : The Euler product for ζ(s), or for
any Dirichlet L-function L(s, χ), is absolutely con-
vergent for σ > 1.
To see this, e.g. for ζ(s), consider the Euler product
ζ−1(s) = Πp(1 − p−s). Then, using the notation of
Section 4, αn = p−sn so Σnαn is clearly absolutely
convergent for σ > 1, and Theorem 4.1 then implies
that ζ−1(s) = Πn(1−αn) is absolutely convergent.
As seen in Section 4 this is equivalent to absolute
convergence of the Euler product for ζ. The proof
for the L- functions is similar.
The following examples will involve Theorem 4.3 (or
its Corollary 4.4) and be less straightforward. As
in Example 6.1 we will generally look at the inverse
of the function in question for convergence, without
specific mention.
6.2 Example : Let

f(s) =
∏
n≥2

1

1− (−1)nn−s
=

1

1− 2−s
· 1

1 + 3−s
· · · .

Then the infinite product f(s) converges for σ >
1/2.
Proof: Here αn = (−1)nn−s, n ≥ 2. Using Theo-
rem 2.7 shows Σn≥2αn is convergent, σ > 0. The
convergence of f(s) follows by Corollary 4.4. �
The next example is very similar to Example 6.2 but
n is replaced by pn so that it is an Euler-type prod-
uct.
6.3 Example : Let

g(s) =
∏
n≥1

1

1 + (−1)np−sn
=

1

1− 2−s
· 1

1 + 3−s
· 1

1− 5−s
· 1

1 + 7−s
· 1

1− 11−s
· · · .

Then the infinite product g(s) converges for σ > 1/2.
Proof: Similar to that of Example 5.2.
6.4 Examples : Euler products that arise from
Dirichlet L-functions are further examples, and as we
have seen in Section 3 and Section 5, for primitive
characters, they appear to also converge for σ > 1/2.
We close this section with some potentially interest-
ing questions.
6.5 Questions : Do the functions f, g in Examples
6.2, 6.3 (particularly 6.3), also satisfy a functional
equation relating the function values at z and 1− z.
Are they in the Selberg class? If so they may give
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an example of a function in the Selberg class that
satisfies the Riemann Hypothesis. Is there another
example of this type? Thanks to theorems of Kac-
zoworski and Petrelli [7], and of Conrey and Ghosh
[4], it is known that the Selberg class in degree d = 0
consists of the single constant function 1, is empty
for 0 < d < 1, and in degree d = 1 consists of the
Riemann zeta function, together with all L-functions
coming from primitive characters and their vertical
translates. So f, g, if in the Selberg class, would have
to have d > 1.
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Во првиот дел на овој труд се докажани теореми за конвергенција на редови на Дирихле, кои се 

подобрување на класичните теореми за конвергенција, како на пример во книгата „Курс по аритметика“ од 

Сер. Вториот дел се однесува на производи од Ојлеров тип. Докажана е теорема за конвергенција која дава 

доволни услови за такви производи да конвергираат во полурамнината што има реален дел поголем од ½. 

Исто така изнесени се нумерички согледувања, кои сугерираат дека Ојлеровите производи кои што 

соодветствуваат на L – функцијата на Дирихле, L (s, χ), конвергираат во таа полурамнина, каде што χ е 

примитивниот карактер на Дирихле. 
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